Synthesis and Structural Characterization of $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\boldsymbol{\eta}^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}_{2} \mathrm{Mg}: \mathrm{An}$ ansa-Zirconocene Ethylene-Hydride Complex

Hyosun Lee, Tony Hascall, Peter J. Desrosiers, ${ }^{\S}$ and Gerard Parkin*

Department of Chemistry, Columbia University New York, New York 10027

Received March 11, 1998
Zirconocene olefin complexes have long been invoked as critical intermediates in a variety of synthetically important transformations. For example, zirconocene-catalyzed carbomagnesiation, ${ }^{1}$ which involves the alkylation of an olefin by organomagnesium reagents, is commonly considered to occur via an olefin complex $\left[\mathrm{Cp}^{\mathrm{R}}\right]_{2} \mathrm{Zr}\left(\mathrm{CH}_{2}=\mathrm{CHR}\right)$ that is generated by reaction of $\left[\mathrm{Cp}^{\mathrm{R}}\right]_{2} \mathrm{ZrCl}_{2}$ with $\mathrm{RCH}_{2} \mathrm{CH}_{2} \mathrm{MgX}$. Likewise, zirconocene olefin-hydride and -alkyl species are important intermediates in catalytic olefin hydrogenation ${ }^{2}$ and polymerization. ${ }^{3}$ Furthermore, olefin-hydride complexes are viewed to be the likely intermediates responsible for alkyl group isomerization during hydrozirconation ${ }^{4}$ and polymerization. ${ }^{5-7}$ Despite their significance, however, zirconocene olefin-hydride complexes have not been isolated and structurally characterized. In this paper, we describe the first structurally characterized zirconocene ethylenehydride complex, namely $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}_{2} \mathrm{Mg}$.

The reactions of zirconocene halide derivatives $\left[\mathrm{Cp}^{\mathrm{R}}\right]_{2} \mathrm{ZrX}_{2}$ with alkylating agents (e.g., $\mathrm{RMgX}, \mathrm{RLi}, \mathrm{R}_{3} \mathrm{Al}$, and methylalumoxane) have been widely studied. Interestingly, even though these reactions may be surprisingly complex, ${ }^{8}$ they nevertheless provide important reagents for organic synthesis ${ }^{9}$ and catalysts for olefin polymerization. ${ }^{3}$ Since ansa derivatives are also prevalent in the aforementioned applications, we have elected to investigate the reactions of the ansa complex $\left[\mathrm{Me}_{2} \mathrm{Si}^{\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}}\right]_{\mathrm{ZrBr}_{2}{ }^{10} \text { with }}$ Grignard reagents (Scheme 1). Significantly, whereas the reaction

[^0]
Scheme 1

of $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{ZrBr}_{2}$ with MeMgBr yields the dimethyl derivative $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{ZrMe}_{2},{ }^{11}$ the corresponding reaction with EtMgBr yields the olefin-hydride complex $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}_{(\mathrm{C}}^{5^{-}}\right.\right.$ $\left.\left.\left.\mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}_{2} \mathrm{Mg}$. The latter complex may also be obtained by insertion of the vinyl group of $\left(\mathrm{CH}_{2}=\mathrm{CH}\right)_{2} \mathrm{Mg}$ into the $\mathrm{Zr}-\mathrm{H}$ bond of $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}(\mathrm{H})(\mu-\mathrm{H})\right\}_{2}$ (Scheme 1). ${ }^{11}$

The molecular structure of $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}_{2}{ }^{-}$ Mg has been determined in the solid state by X-ray diffraction (Figure 1), ${ }^{12}$ with the $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}^{-}$fragment exhibiting the expected geometry for a bent metallocene derivative. ${ }^{13}$ Furthermore, the diffraction study demonstrates that two of these $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}^{-}$units are linked via a Mg^{2+} center, which interacts principally with the zirconium hydride ligands and the central methylene groups of the ethylene ligands; as such, the magnesium adopts a pseudo-tetrahedral coordination. ${ }^{14,15}$ Presumably as a result of this interaction, the zirconium - olefin bonding is asymmetric, with $d\left(\mathrm{Zr}-\mathrm{C}_{\text {cent }}\right)=2.43$ \AA and $d\left(\mathrm{Zr}-\mathrm{C}_{\text {latt }}\right)=2.26 \AA .{ }^{16-18}$ It is also evident that, with a $\mathrm{C}-\mathrm{C}$ bond length of $1.48 \AA$, the $\left[\mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ moiety of $\left\{\left[\mathrm{Me}_{2^{-}}\right.\right.$

[^1]

Figure 1. Molecular structure of $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}_{2} \mathrm{Mg}$.
$\left.\left.\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}_{2} \mathrm{Mg}$ may be appropriately described as a metallacyclopropane. ${ }^{19}$

The synthesis of $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}_{2} \mathrm{Mg}$ is particularly noteworthy since zirconocene olefin-hydride complexes have not previously been isolated, even though olefin complexes have been obtained as phosphine adducts $\left[\mathrm{Cp}^{\mathrm{R}}\right]_{2} \mathrm{Zr}\left(\mathrm{CH}_{2}=\mathrm{CH}-\right.$ $\mathrm{R})\left(\mathrm{PR}_{3}\right)$ from the reactions of $\left[\mathrm{Cp}^{\mathrm{R}}\right]_{2} \mathrm{ZrX}_{2}$ with $\mathrm{RCH}_{2} \mathrm{CH}_{2} \mathrm{MgX}$ in the presence of $\mathrm{PR}_{3} .{ }^{20}$ The formation of $\left[\mathrm{Cp}^{\mathrm{R}}\right]_{2} \mathrm{Zr}\left(\mathrm{CH}_{2}=\mathrm{CHR}\right)-$ $\left(\mathrm{PR}_{3}\right)$ is commonly considered to occur via elimination of alkane $\left(\mathrm{RCH}_{2} \mathrm{CH}_{3}\right)$ from the dialkyl $\left[\mathrm{Cp}^{\mathrm{R}}\right]_{2} \mathrm{Zr}_{\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{R}\right)_{2} \text {. In certain }}$ instances, the reactions of zirconocene derivatives with EtMgX have also been reported to give dinuclear ethylene-bridged zirconocene complexes, e.g., $\left[\mathrm{Cp}_{2} \mathrm{ZrMe}\right]_{2}\left(\mu-\eta^{2}, \eta^{2}-\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)^{21}$ and $\left.\left\{\left[\left(\mathrm{Me}_{2} \mathrm{Si}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{3}\right)\right] \mathrm{ZrEt}\right\}_{2}\left(\mu-\eta^{2}, \eta^{2}-\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)\right)^{7,22}$

Although the mechanism for the formation of $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5}-\right.\right.\right.$ $\left.\left.\left.\mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}_{2} \mathrm{Mg}$ is undoubtedly complex, two species which have been identified prior to its generation are sequentially the ethyl-bromide complex, $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}(\mathrm{Et}) \mathrm{Br},{ }^{23}$ and the metallacyclopentane derivative, $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{4} \mathrm{H}_{8}\right) ;{ }^{24,25}$

[^2]the latter complex is presumably obtained via an ethylene intermediate, $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)$. Assuming that the interconversion between $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{4} \mathrm{H}_{8}\right)$ and $\left[\mathrm{Me}_{2}-\right.$ $\left.\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)$ is reversible, ${ }^{26}$ a possible pathway for the formation of $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}^{-}$involves alkylation of the latter giving $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Ett}\right\}^{-},{ }^{27}$ followed by β-hydrogen elimination.

The reactivity of $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}^{-}$also provides supporting evidence for its characterization as an olefin adduct. For example, addition of I_{2} results in elimination of $\mathrm{C}_{2} \mathrm{H}_{4}$ and formation of $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{ZrI}_{2}$. Likewise, $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5}-\right.\right.\right.$ $\left.\left.\left.\mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}^{-}$reacts with $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{ZrBr}_{2}$ to generate, inter alia, $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}(\mathrm{Et}) \mathrm{Br}$.

In summary, $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}_{2} \mathrm{Mg}$, the first structurally characterized example of an olefin-hydride complex of zirconium, has been synthesized by (i) the reaction of [$\mathrm{Me}_{2^{-}}$ $\left.\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right]_{\mathrm{ZrBr}_{2}}$ with excess EtMgBr and (ii) insertion of $\left(\mathrm{CH}_{2}=\mathrm{CH}\right)_{2} \mathrm{Mg}$ into the $\mathrm{Zr}-\mathrm{H}$ bonds of $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}(\mathrm{H})-\right.$ $(\mu-\mathrm{H})\}_{2}$.

Acknowledgment. We thank the U.S. Department of Energy, Office of Basic Energy Sciences (No. DE-FG02-93ER14339) for support of this research. G.P. is the recipient of a Presidential Faculty Fellowship Award (1992-1997). We thank Dr. Alan Vaughan (Exxon Chemical Co.) for a generous gift of $\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}_{2}$.

Supporting Information Available: Experimental details for all compounds and crystallographic data for $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}_{2^{-}}$ Mg (24 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA980813B

[^3]
[^0]: ${ }^{\text {§ Former address: University of the Virgin Islands, St. Thomas, U.S. Virgin }}$ Islands 00802. Present address: Symyx Technologies, 3100 Central Expressway, Santa Clara, CA 95051.
 (1) (a) Hoveyda, A. H.; Morken, J. P. Angew. Chem., Int. Ed. Engl. 1996, 35, 1262-1284 and references therein. (b) Negishi, E.; Kondakov, D. Y. Chem Soc. Rev. 1996, 417-426. (c) Bell, L.; Whitby, R. J.; Jones, R. V. H.; Standen, M. C. H. Tetrahedron Lett. 1996, 37, 7139-7142.
 (2) Takahashi, T.; Suzuki, N.; Kageyama, M.; Nitto, Y.; Saburi, M.; Negishi, E. Chem. Lett. 1991, 1579-1582.
 (3) (a) Jordan, R. F. Adv. Organomet. Chem. 1991, 32, 325-387. (b) Piers, W. E. Chem. Eur. J. 1998, 4, 13-18. (c) Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143-1170. (d) Grubbs, R. H.; Coates, G. W. Acc. Chem. Res. 1996, 29, 85-93. (e) Möhring, P. C.; Coville, N. J. J. Organomet. Chem. 1994, 479, 1-29.
 (4) (a) Nelson, J. E.; Bercaw, J. E.; Labinger, J. A. Organometallics 1989, 8, 2484-2486. (b) Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. Engl. 1976, 15, 333-340. (c) Carr, D. B.; Yoshifuji, M.; Shoer, L. I.; Gell, K. I.; Schwartz, J. Ann. N.Y. Acad. Sci. 1977, 295, 127-134.
 (5) Prosenc, M.-H.; Brintzinger, H.-H. Organometallics 1997, 16, 38893894 and references therein.
 (6) (a) Busico, V.; Cipullo, R. J. Organomet. Chem. 1995, 497, 113-118. (b) Busico, V.; Caporaso, L.; Cipullo, R.; Landriani, L.; Angelini, G.; Margonelli, A.; Segre, A. L. J. Am. Chem. Soc. 1996, I18, 2105-2106. (c) Leclerc, M. K.; Brintzinger, H. H. J. Am. Chem. Soc. 1996, 118, 90249032.
 (7) For another example of alkyl group isomerization that has been proposed to occur via a zirconocene olefin-hydride complex, see: Fernández, F. J.; Gómez-Sal, P.; Manzanero, A.; Royo, P.; Jacobsen, H.; Berke, H. Organometallics 1997, 16, 1553-1561.
 (8) For example, Harrod's investigation of the reaction of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ with $\mathrm{Bu}^{n} \mathrm{Li}$ provides an excellent illustration of the complexity of these systems. See: Dioumaev, V. K.; Harrod, J. F. Organometallics 1997, 16, 1452-1464.
 (9) (a) Negishi, E.; Takahashi, T. Acc. Chem. Res. 1994, 27, 124-130. (b) Negishi, E.; Takahashi, T. Synthesis 1988, 1-19.
 (10) $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{ZrBr}_{2}$ is obtained by a method similar to that used for $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{ZrCl}_{2}$. See: Jutzi, P.; Dickbreder, R. Chem. Ber. 1986, 119, 1750-1754.

[^1]: (11) Lee, H.; Desrosiers, P. J.; Guzei, I.; Rheingold, A. L.; Parkin, G. J. Am. Chem. Soc. 1998, 120, 3255.
 (12) $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right\}_{2} \mathrm{Mg} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ is triclinic, $P \overline{1}$ (No. 2), $a=10.379(1) \AA, b=10.426(1) \AA, c=22.868(1) \AA, \alpha=97.901(1)^{\circ}, \beta=$ $93.010(1)^{\circ}, \gamma=101.420(1)^{\circ}, V=2394.7(2) \AA^{3}, Z=2, T=293 \mathrm{~K}$.
 (13) In benzene solution, the $\left[\mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right]$ moiety is characterized by two multiplets at $\delta-0.64$ and -0.02 in the ${ }^{1} \mathrm{H}$ NMR spectrum for the central and lateral CH_{2} groups, respectively, and a singlet at -2.44 for the zirconium hydride ligand.
 (14) Individual bond lengths (A) are as follows: $\mathrm{Mg}-\mathrm{C} 512.252(6), \mathrm{Mg}-$ C01 2.262(6), Mg-H1 1.82, Mg-H2 1.81 .
 (15) For an example of a metallocene olefin complex that exhibits an interaction with an aluminum center, namely, $\mathrm{Cp}{ }^{*} 2 \mathrm{Ta}(\mathrm{H})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{AlEt}_{3}\right)$, see: McDade, C.; Gibson, V. C.; Santarsiero, B. D.; Bercaw, J. E. Organometallics 1988, 7, 1-7.
 (16) These values are the average of the two independent $\left[\mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ interactions. Individual bond lengths (\AA) and angles (deg) are as follows: $\mathrm{Zr} 1-$ C51 2.425(6), Zr1-C52 2.257(6), C51-C52 1.485(7), Zr1-H1 1.91(3), Zr2C01 2.436(6), Zr2-C02 2.262(6), C01-C02 1.482(7), Zr2-H2 2.02(3); C51-Zr1-C52 36.8(2), C01-Zr2-C02 36.5(2).

[^2]: (17) For comparison, the average bond lengths and angles for the two reported structures of $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ (PMe_{3}) are as follows: $\mathrm{Zr}-\mathrm{C}_{\text {cent }}=2.36$ $\AA, \mathrm{Zr}-\mathrm{C}_{\text {latt }}=2.35 \AA, \mathrm{C}-\mathrm{C}=1.47 \AA ; \mathrm{C}-\mathrm{Zr}-\mathrm{C}=36.4^{\circ}$. See: (a) Alt, H . G.; Denner, C. E.; Thewalt, U.; Rausch, M. D. J. Organomet. Chem. 1988, 356, C83-C85. (b) Binger, P.; Müller, P.; Benn, R.; Rufinska, A.; Gabor, B.; Krüger, C.; Betz, P. Chem. Ber. 1989, 122, 1035-1042.
 (18) In contrast, theoretical calculations indicate that the cationic olefin adduct $\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}\right]^{+}$would be characterized by a considerably weaker interaction, i.e. $\mathrm{Zr}-\mathrm{C}_{\text {cent }}=2.75 \AA$ and $\mathrm{Zr}-\mathrm{C}_{\text {latt }}=2.46 \AA$. See ref 5 .
 (19) For example, the $\mathrm{C}-\mathrm{C}$ bond lengths in $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ are 1.53 and $1.33 \AA$, respectively. ${ }^{19 \mathrm{a}}$ Furthermore, the $\mathrm{C}-\mathrm{C}$ bond lengths in mononuclear transition metal olefin complexes span the range 1.3-1.49 $\AA .{ }^{19 b}$ (a) Pauling L. The Nature of The Chemical Bond, 3rd ed.: Cornell University Press: Ithaca, 1960; pp 222 and 230. (b) Cambridge Structural Database Version 5.14. 3D Search and Research Using the Cambridge Structural Database; Allen, F. H.; Kennard, O. Chem. Design Automation News 1993, 8 (1), p 1, 31-37.
 (20) For examples of $\mathrm{Cp}^{\mathrm{R}} \mathrm{Z}^{2}\left(\mathrm{CH}_{2}=\mathrm{CHR}\right)\left(\mathrm{PR}_{3}\right)$ complexes, see ref 9 a and: Buchwald, S. L.; Nielsen, R. B. Chem. Rev. 1988, 88, 1047-1058.
 (21) Takahashi, T.; Kasai, K.; Suzuki, N.; Nakajima, K.; Negishi, E. Organometallics 1994, 13, 3413-3414.
 (22) For bridging zirconium olefin complexes that are not supported by cyclopentadienyl ligands, e.g. $\mathrm{Zr}_{2} \mathrm{X}_{6}\left(\mathrm{PEt}_{3}\right)_{4}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$, see: Cotton, F. A.; Kibala, P. A. Inorg. Chem. 1990, 29, 3192-3196.

[^3]: (23) $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}(\mathrm{Et}) \mathrm{Br}$ may be isolated by the reaction of $\left[\mathrm{Me}_{2} \mathrm{Si}-\right.$ $\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2} \mathrm{ZrBr}_{2}$ with EtMgBr (ca. 1.5 equiv) in THF at room temperature.
 (24) $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{4} \mathrm{H}_{8}\right)$ may be synthesized by the reaction of $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{ZrBr}_{2}$ with $\mathrm{EtMgBr}(c a .4$ equiv) in THF at room temperature; however, $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{4} \mathrm{H}_{8}\right)$ is more conveniently obtained from the corresponding reaction of $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{ZrCl}_{2}$ with EtMgCl since the reaction is faster. $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{4} \mathrm{H}_{8}\right)$ may also be generated by reaction of the hydride complex $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}(\mathrm{H})(\mu-\mathrm{H})\right\}_{2}$ with $\mathrm{C}_{2} \mathrm{H}_{4}$ at room temperature.
 (25) The permethylcyclopentadienyl analogue $\mathrm{Cp}^{*}{ }_{2} \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{4} \mathrm{H}_{8}\right)$ is also known. See: Manriquez, J. M.; McAlister, D. R.; Sanner, R. D.; Bercaw, J. E. J. Am. Chem. Soc. 1978, 100, 2716-2724.
 (26) In support of this suggestion, $\mathrm{Cp}^{*}{ }_{2} \mathrm{Ti}\left(\eta^{2}-\mathrm{C}_{4} \mathrm{H}_{8}\right)$ is unstable with respect to dissociation of ethylene and $\mathrm{Cp}_{2}{ }_{2} \mathrm{Ti}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right){ }^{26 \mathrm{a}}$ Furthermore, $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)$ reacts with PMe_{3} to give the olefin complex $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{PMe}_{3} .{ }^{26 \mathrm{~b}}$ (a) Cohen, S. A.; Auburn, P. R.; Bercaw, J. E. J. Am. Chem. Soc. 1983, 105, 11361143. (b) Takahashi, T.; Tamura, M.; Saburi, M.; Uchida, Y.; Neigishi, E. J. Chem. Soc., Chem. Commun. 1989, 852-853.
 (27) Supporting the notion that the reaction may proceed via $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5^{-}}\right.\right.\right.$ $\left.\left.\left.\mathrm{Me}_{4}\right)_{2}\right] \mathrm{Zr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Et}\right\}^{-}$, the reaction of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ with EtMgBr (3 equiv) in the presence of PMe_{3} has been reported to generate a species tentatively identified as $\left[\mathrm{Cp}_{2} \mathrm{ZrEt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] \mathrm{MgBr}$; the latter complex reacts with H_{2} to give an uncharacterized hydride derivative. ${ }^{27 a}$ Furthermore, $\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{CH}_{2}=\mathrm{CHR}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{R}\right]^{-}$species have also been suggested to be intermediates in carbomagnesiation reactions. ${ }^{27 b-d}$ (a) Takahashi, T.; Suzuki, N.; Kageyama, M.; Nitto, Y.; Saburi, M.; Negishi, E. Chem. Lett. 1991, 1579-1582. (b) Lewis, D. P.; Whitby, R. J.; Jones, R. V. H. Tetrahedron 1995, 51, 4541-4550. (c) Houri, A. F.; Didiuk, M. T.; Xu, Z.; Horan, N. R.; Hoveyda, A. H. J. Am. Chem. Soc. 1993, 115, 6614-6624. (d) Hoveyda, A. H.; Morken, J. P.; Houri, A. F.; Xu, Z. J. Am. Chem. Soc. 1992, 114, 6692-6697.

